45 research outputs found

    On the ecology of hyperscum-forming Microsystis aeruginosa in a hypertrophic African lake.

    Get PDF
    Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1987.Light is the primary source of energy in most of earth's ecosystems . In freshwater ecosystems the major interacting factors that determine the abundance and species composition of planktonic phototrophs, the primary utilizers of light, are nutrients, temperature and light. With increasing eutrophication and declining geographical latitude, nutrient availability becomes in excess of the organisms' requirements, water temperature is more favourable for growth, and community structure depends to a greater extent on light availability. This study focuses on the population dynamics of the bloom-forming cyanobacterium Microcystis aeruginosa Kutz. emend. Elenkin in subtropical Hartbeespoort Dam, South Africa. The objectives of the study were: to investigate the annual cycle, and the factors leading to the dominance and success of the cyanobacterium in this hypertrophic, warm monomictic lake, where light availability is the major factor limiting phytoplankton growth rates; to study the surface blooms and ultimately hyperscums that this species forms; and to assess the ecological significance of hyperscums. A 4. 5-years field study of phytoplankton abundance and species composition in relation to changes in the physical environment, was undertaken. The hypothesis was that M. aeruginosa dominated the phytoplankton population (> 80 % by volume) up to 10 months of every year because it maintained itself within shallow diurnal mixed layers and was thus ensured access to light. It was shown that wind speeds over Hartbeespoort Dam were strong enough to mix the epilimnion (7 - 18 m depth) through Langmuir circulations only 12 % of the time. At other times solar heating led to the formation of shallow ( < 2 m) diurnal mixed layers (Z[1]) that were usually shallower than the euphotic zone (Zeu; x = 3.5 m), while the seasonal mixed layer (zrn) was always deeper than Zeu. From the correspondence between vertical gradients of chlorophyll a concentrations and density gradients, when M. aeruginosa was dominant, it was implied that this species maintained the bulk of its population within Z[1]. Under the same mixing conditions non-buoyant species sank into dark layers. These data point out the importance of distinguishing between Zrn and Z[1], and show the profound effect that the daily pattern of Z[1], as opposed to the seasonal pattern of Zrn can have on phytoplankton species composition Adaptation to strong light intensities at the surface was implicated from low cellular chlorophyll a content (0.132 ÎŒg per 10[6] cells) and high I[k ](up to 1230 ÎŒE m⁻ÂČ SÂŻÂč). Ensured access to light, the postmaximum summer populations persisted throughout autumn and winter, despite suboptimal winter temperatures, by sustaining low losses. Sedimentation caused a sharp decline of the population at the end of winter each year and a short ( 2-3 months) successional episode follCMed, rut by late spring M. aeruginosa. was again dominant. The mixing regime in Hartbeespoort Dam and the buoyancy mechanism of M. aeruginosa led to frequent formation of surface bloons and ultimately hyperscums. Hyperscums were defined as thick (decimeters), crusted, buoyant cyanobacterial mats, in which the organisms are so densely packed that free water is not evident. In Hartbeespoort Dam in winter M. aeruginosa formed hyperscums that measured up to 0.75 m in thickness, covered more than a hectare, contained up to 2 tonnes of chlorophyll a, and persisted for 2 - 3 monnths. Hyperscum formation was shown to depend upon the coincidence of the following preconditions: a large, pre-existing standing crop of positively buoyant cyanobacteria; turbulent mixing that is too weak to overcome the tendency of the cells to float, over prolonged periods (weeks); lake morphometry with wind-protected sites on lee shores; and high incident solar radiation. The infrequent occurrence of hyperscums can be attributed to the rare co-occurrence of these conditions. Colonies in the hyperscum were arranged in a steep vertical gradient, where colony compaction increased exponentially with decreasing distance form the surface. This structure was caused by evaporative dehydration at the surface, and by the buoyancy regulation mechanism of M. aeruginosa., which results with cells being unable to lose boyancy when deprived access to light from above. The mean chlorophyll a concentration and water content were 3.0 g 1ÂŻÂč and 14 % at the surface crust, 1.0 g 1ÂŻÂč and 77 % at a few mm depth, and 0.3 g 1ÂŻÂč and 94 % at 10 cm depth, where M. aeruginosa cell concentration exceeded 109 mlÂŻÂč. A consequence of the high cell and pigment concentrations was that light penetrated only 3 mm or less, below which anaerobic, highly reduced conditions developed. Nutrient concentrations in hyperscum interstitial water, collected by dialysis, increased dramatically with time (phosphate: 30-fold over 3 months; ammonia: 260-fold). Volatile fatty acids, intermediate metabolites in anaerobic decomposition processes, were present. Gas bubbles trapped within the hyperscum contained methane (28 %) , and CO[2] (19 %), the major end products of anaerobic decomposition, and no oxygen. The structure and function of M. aeruginosa in hyperscum was examined in relation to the vertical position of colonies and the duration of exposure to hyperscum condition. Colonies and cells collected from 10 em depth in the hyperscum were similar in their morphology (light and fluorescent microscopy) and ultrastructure (transmission and scanning electron microscopy) to those of colonies from surface blooms in the main basin of the lake. With declining depth over the uppermost 10 mm of the hyperscum cells appeared increasingly dehydrated, decomposed and' colonized by bacteria. studies employing microelectrode techniques demonstrated that photosynthetic activity of colonies at the surface of a newly accumulated hyperscum rapidly photoinhibited, substrate-limited, and then ceased within hours of exposure to light intensities > 625 ÎŒE m⁻ÂČ SÂŻÂč. Photooxidative death followed. The dead cells dehydrated to form the dry crust, from underneath. and space was thus created for colonies rising Cells collected from 10 cm depth retained their photosynthetic capacity ([14]C-uptake experiments) throughout the hyperscum season, although a considerable decline in this capacity was noted over the last (third) month. Altogether the data indicated that spatial separation developed within the hyperscum, between a zone at the surface of lethal physical conditions, a zone beneath the surface of stressful and probably lethal chemical conditions, and a deeper zone of more moderate conditions, which nevertheless, deteriorated after 2 - 3 months. A conceptual model describing the fate of a colony entering a hyperscum was then proposed. According to this model, a colony that arrives below a hyperscum and is not carried away by currents, becomes over-buoyant in the dark and floats into the bottom of the hyperscum. With time it migrates towards, due to its own positive buoyancy, the buoyancy of colonies rising from underneath, and the collapse of cells at the top. It survives in the dark, anaerobic environment by maintaining low levels of basal metabolism while utilizing stored reserves. Depending on weather conditions, the colony mayor may not remain within the hyperscum long enough to reach the zone of decomposition near the surface, where it would die. With the aging of the hyperscum and the accumulation of trapped decomposition products, the zone of decomposition expands. Thus, a hyperscum is essentially a site of a continuous cycle of death and dehydration at the surface and upward migration of colonies from below to replace those that died, although not all colonies entering the hyperscum necessarily reach the lethal zone. The formation of hyperscums was shown to have no major influence on the annual cycle of M. aeruginosa in Hartbeespoort Dam. The seasonality of increase and decline of the planktonic population was similar from year to year, irrespective of whether or not hyperscums formed. The phenomenon of hyperscums demonnstrated that, as Reynolds and Walsby (1975) claimed, thick cyanobacterial water-blooms do form incidentally and have no vital function in the biology of the organism. water temperature did have a major effect on the annual cycle of this species in Hartbeespoort Dam. In temperate lakes the low water temperatures in autumn and winter (<10° C) cause M. aeruginosa to lose its ability to regain buoyancy in the dark, and consequently it sinks to bottom sediments. The higher ( > l2°C) minimum winter temperature in Hartbeespoort Dam leads to the maintenance of a relatively large residual planktonic population throughout the winter. Unlike the case in temperate lakes, the long-term survival of M. aeruginosa in warm-water lakes probably does not depend on winter benthic stocks for the provision of an inoculum for the following growth season

    Ecological impacts of excessive water level fluctuations in stratified freshwater lakes

    Get PDF
    Water levels of lakes fluctuate naturally in response to climatic and hydrological forcing. Human over-exploitation of water resources leads to increased annual and interannual fluctuations of water levels, at times far beyond natural amplitudes and/or at altered time schedules. Climate change models predict increased occurrence of extreme events (flooding, extended droughts), which will further magnify the seasonal and multiannual amplitude of water level fluctuations in lakes. A relatively wide literature base already exists for shallow lakes, demonstrating that excessive water level fluctuations impair ecosystem functioning, ultimately leading to shifts between clear-water and turbid states. Evidence is gradually building in the published literature demonstrating that deep (stratified) freshwater lakes also respond adversely to excessive water level fluctuations. Analysis of existing data suggests that at moderate disturbance levels littoral habitats are affected, and hence their biota is also impacted. At further disturbance levels, ecosystem destabilization symptoms are observed, including weakening of keystone species, proliferation of nuisance and invasive species, loss of biodiversity, and increased internal nutrient loading. Ultimately, eutrophication symptoms are manifested, especially large and more frequent cyanobacterial blooms, without increased external nutrient loading. Examples from a range of subtropic and temperate freshwater lakes and reservoirs demonstrate that both top-down and bottom-up processes promote those symptoms. The response of aquatic ecosystems, particularly deep lakes, to water level fluctuations is an under-studied field of crucial importance to the management of water resources, where limnologists have a leading role to play in the near future

    PlanktoMetrix – a computerized system to support microscope counts and measurements of plankton

    Get PDF
    We developed a computerized image-analysis system, PlanktoMetrix, the first system to conduct all steps of conventional microscope-based phytoplankton and zooplankton analyses (counting, measuring sizes, entering data, computations, storage in database) simultaneously using real-time digital imaging. The microscope field that displays the sample is continuously scanned by a digital camera and screened on a computer monitor, on which cell counts and measurements of linear dimensions are made by mouse clicks. When the microscope tasks are completed, computations of species abundances, estimates of biovolume per individual, species biomass per unit volume, and total assemblage biomass concentration are made automatically and stored into a database. All raw and computed data are exportable to common spreadsheet platforms. PlanktoMetrix offers the production of high-quality data in less time, with lower user fatigue and fewer typing errors; therefore, more time can be devoted to data analysis rather than generation. Furthermore, PlanktoMetrix allows collecting organism size data regularly, thus offering plankton ecologists a tool for following seasonal, ontogenetic, and other well-documented but generally ignored changes in plankton size and morphology. An example of PlanktoMetrix-generated cell size time series shows that the dinoflagellate Peridiniopsis elpatiewskyi undergoes a distinct annual cycle with larger cells in winter and smaller cells in summer. PlanktoMetrix is distributed free to interested users and will likely be available in the future as an open-source platform

    Species-specific imprint of the phytoplankton assemblage on carbon isotopes and the carbon cycle in Lake Kinneret, Israel

    Get PDF
    Lakes undergoing major changes in phytoplankton species composition are likely to undergo changes in carbon (C) cycling. In this study we used stable C isotopes to understand how the C cycle of Lake Kinneret, Israel, responded to documented changes in phytoplankton species composition. We compared the annual &delta;13C cycle of particulate organic matter from surface water (POMsurf) between (1) years in which a massive spring bloom of the dinoflagellate Peridinium gatunense occurred (&ldquo;Peridinium years&rdquo;) and (2) years in which it did not (&ldquo;non-Peridinium years&rdquo;). In non-Peridinium years, the spring &delta;13C&ndash;POMsurf maxima were lower by 3.3&permil;. These spring &delta;13C maxima were even lower in POM sinking into sediment traps and in zooplankton (lower by 6.8 and 6.9&permil;, respectively). These differences in the isotopic composition of the major organic C components in the lake represent ecosystem-level responses to the presence or absence of the key blooming species P. gatunense . When present, the intensive, almost monospecific bloom lowers the concentrations of CO2(aq), causing a reduction in the isotopic fractionation of the algae (higher &delta;13C of POMsurf) and massive precipitation of calcium carbonate (CaCO3). In &ldquo;non-Peridinium years, the phytoplankton cannot deplete CO2(aq) to similar levels; the algae maintain higher isotopic fractionation, leading to lower &delta;13C maxima. These changes are reflected higher up in the food web (zooplankton) and in sedimenting organic matter. The consequences for the ecosystem in non-Peridinium years are lower export of both organic and inorganic C

    Resisting annihilation: relationships between functional trait dissimilarity, assemblage competitive power and allelopathy

    Get PDF
    Abstract Allelopathic species can alter biodiversity. Using simulated assemblages that are characterised by neutrality, lumpy coexistence and intransitivity, we explore relationships between within-assemblage competitive dissimilarities and resistance to allelopathic species. An emergent behaviour from our models is that assemblages are more resistant to allelopathy when members strongly compete exploitatively (high competitive power). We found that neutral assemblages were the most vulnerable to allelopathic species, followed by lumpy and then by intransitive assemblages. We find support for our modeling in real-world time-series data from eight lakes of varied morphometry and trophic state. Our analysis of this data shows that a lake's history of allelopathic phytoplankton species biovolume density and dominance is related to the number of species clusters occurring in the plankton assemblages of those lakes, an emergent trend similar to that of our modeling. We suggest that an assemblage's competitive power determines its allelopathy resistance

    Occurrence and mass development of Mougeotia Spp. (Zygnemataceae) in large, deep lakes

    Get PDF
    Over the last decades, mass developments by the filamentous conjugating green alga Mougeotia have been followed in three large peri-alpine lakes(Lake Geneva, Lake Garda, Lake Maggiore) and in the sub-tropical Lake Kinneret. The aim of this study is to highlight annual and interannual patterns of Mougeotia biomass in the studied lakes and select key environmental parameters that may favour and maintain its mass development. Our results confirm former studies that planktic Mougeotia favours meso-oligotrophic conditions and becomes dominant when annual mean total phosphorus concentrations in the epilimnion fall below 20 ?gl-1. This triggering factor has effect with interactions of other environmental circumstances such as the water column stability. Physiological and morphological features of the taxon make it a successful competitor under stratified conditions. Results also showed that in three out of the four studied lakes, the annual peak was higher when the annual population development started earlier. Focusing on Lake Geneva, depth and strength of the thermocline, as well as wind speed in the beginning of summer that can cause nutrient replenishment and mix the epilimnion are key factors in the blooming of the taxon

    Exploitation and destabilization of a warm, freshwater ecosystem through engineered hydrological change

    Get PDF
    Exploitation of freshwater resources is having catastrophic effects on the ecological dynamics, stability, and quality of those water resources on a global scale, especially in arid and semiarid regions. Lake Kinneret, Israel (the Biblical Sea of Galilee), the only major natural freshwater lake in the Middle East, has been transformed functionally into a reservoir over the course of ∌70 years of hydrological alterations aimed mostly at producing electrical power and increasing domestic and agricultural water supply. Historical changes in lake chemistry and biology were reconstructed using analysis of sedimentary nutrient content, stable and radioisotope composition, biochemical and morphological fossils from algae, remains of aquatic invertebrates, and chemical indices of past light regimes. Together, these paleolimnological analyses of the lake's bottom sediments revealed that this transformation has been accompanied by acceleration in the rate of eutrophication, as indicated by increased accumulation rates of phosphorus, nitrogen, organic matter, phytoplankton and bacterial pigments, and remains of phytoplankton and zooplankton. Substantial increases in these indices of eutrophication coincide with periods of increased water‐level fluctuations and drainage of a major upstream wetland in the early to middle 20th century and suggest that management of the lake for increased water supply has degraded water quality to the point that ecosystem stability and sustainability are threatened. Such destabilization may be a model for eutrophication of freshwater lakes in other arid regions of the world in which management emphasizes water quantity over quality.Peer reviewedZoolog

    The extent and variability of storm-induced temperature changes in lakes measured with long-term and high-frequency data

    Get PDF
    The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind-induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long-term and high-frequency lake datasets from 11 countries to assess the magnitude of wind- vs. rainstorm-induced changes in epilimnetic temperature. We found small day-to-day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day-to-day epilimnetic temperature decreased, on average, by 0.28 degrees C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 +/- 2.7 m s(-1), 1 SD) and by 0.15 degrees C after the heaviest rainstorms (storm mean daily rainfall: 21.3 +/- 9.0 mm). The largest decreases in epilimnetic temperature were observed >= 2 d after sustained strong wind or heavy rain (top 5(th) percentile of wind and rain events for each lake) in shallow and medium-depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm-induced mean epilimnetic temperature decreases were typicallyPeer reviewe

    Storm impacts on phytoplankton community dynamics in lakes

    Get PDF
    In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.Peer reviewe

    Storm impacts on phytoplankton community dynamics in lakes

    Get PDF
    In many regions across the globe, extreme weather events, such as storms, have increased in frequency, intensity and duration. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. For lake ecosystems, high winds and rainfall associated with storms are linked by short term runoff events from catchments and physical mixing of the water column. Although we have a well-developed understanding of how such wind and precipitation events alter lake physical processes, our mechanistic understanding of how these short-term disturbances 48 translate from physical forcing to changes in phytoplankton communities is poor. Here, we provide a conceptual model that identifies how key storm features (i.e., the frequency, intensity, and duration of wind and precipitation) interact with attributes of lakes and their watersheds to generate changes in a lake’s physical and chemical environment and subsequently phytoplankton community structure and dynamics. We summarize the current understanding of storm-phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions by generating testable hypotheses across a global gradient of lake types and environmental conditions.Fil: Stockwell, Jason D.. University of Vermont; Estados UnidosFil: Adrian, Rita. Leibniz Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Andersen, Mikkel. Dundalk Institute of Technology; IrlandaFil: Anneville, Orlane. Institut National de la Recherche Agronomique; FranciaFil: Bhattacharya, Ruchi. University of Missouri; Estados UnidosFil: Burns, Wilton G.. University of Vermont; Estados UnidosFil: Carey, Cayelan C.. Virginia Tech University; Estados UnidosFil: Carvalho, Laurence. Freshwater Restoration & Sustainability Group; Reino UnidoFil: Chang, ChunWei. National Taiwan University; RepĂșblica de ChinaFil: De Senerpont Domis, Lisette N.. Netherlands Institute of Ecology; PaĂ­ses BajosFil: Doubek, Jonathan P.. University of Vermont; Estados UnidosFil: Dur, GaĂ«l. Shizuoka University; JapĂłnFil: Frassl, Marieke A.. Griffith University; AustraliaFil: Gessner, Mark O.. Leibniz Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Hejzlar, Josef. Biology Centre of the Czech Academy of Sciences; RepĂșblica ChecaFil: Ibelings, Bas W.. University of Geneva; SuizaFil: Janatian, Nasim. Estonian University of Life Sciences; EstoniaFil: Kpodonu, Alfred T. N. K.. City University of New York; Estados UnidosFil: Lajeunesse, Marc J.. University of South Florida; Estados UnidosFil: Lewandowska, Aleksandra M.. Tvarminne Zoological Station; FinlandiaFil: Llames, Maria Eugenia del Rosario. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas; ArgentinaFil: Matsuzaki, Shin-ichiro S.. National Institute for Environmental Studies; JapĂłnFil: Nodine, Emily R.. Rollins College; Estados UnidosFil: NĂ”ges, Peeter. Estonian University of Life Sciences; EstoniaFil: Park, Ho-Dong. Shinshu University; JapĂłnFil: Patil, Vijay P.. US Geological Survey; Estados UnidosFil: Pomati, Francesco. Swiss Federal Institute of Water Science and Technology; SuizaFil: Rimmer, Alon. Kinneret Limnological Laboratory; IsraelFil: Rinke, Karsten. Helmholtz-Centre for Environmental Research; AlemaniaFil: Rudstam, Lars G.. Cornell University; Estados UnidosFil: Rusak, James A.. Ontario Ministry of the Environment and Climate Change; CanadĂĄFil: Salmaso, Nico. Research and Innovation Centre - Fondazione Mach; ItaliaFil: Schmitt, François. Laboratoire d’OcĂ©anologie et de GĂ©osciences; FranciaFil: Seltmann, Christian T.. Dundalk Institute of Technology; IrlandaFil: Souissi, Sami. Universite Lille; FranciaFil: Straile, Dietmar. University of Konstanz; AlemaniaFil: Thackeray, Stephen J.. Lancaster Environment Centre; Reino UnidoFil: Thiery, Wim. Vrije Unviversiteit Brussel; BĂ©lgica. Institute for Atmospheric and Climate Science; SuizaFil: Urrutia Cordero, Pablo. Uppsala University; SueciaFil: Venail, Patrick. Universidad de Ginebra; SuizaFil: Verburg, Piet. 8National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Williamson, Tanner J.. Miami University; Estados UnidosFil: Wilson, Harriet L.. Dundalk Institute of Technology; IrlandaFil: Zohary, Tamar. Israel Oceanographic & Limnological Research; IsraelGLEON 20: All Hands' MeetingRottnest IslandAustraliaUniversity of Western AustraliaUniversity of AdelaideGlobal Lake Ecological Observatory Networ
    corecore